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A monotone scheme for finite volume simulation of magnetohydrodynamic inter-
nal flows at high Hartmann number is presented. The numerical stability is analysed
with respect to the electromagnetic force. Standard central finite differences applied
to finite volumes can only be numerically stable if the vector products involved in
this force are computed with a scheme using a fully staggered grid. The electromag-
netic quantities (electric currents and electric potential) must be shifted by half the
grid size from the mechanical ones (velocity and pressure). An integral treatment of
the boundary layers is used in conjunction with boundary conditions for electrically
conducting walls. The simulations are performed with inhomogeneous electrical
conductivities of the walls and reach high Hartmann numbers in three-dimensional
simulations, even though a non-adaptive grid is used.c© 1999 Academic Press
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1. INTRODUCTION

Magnetohydrodynamic (MHD) duct flows have been extensively studied by asymptotic
theory. However, very little work is based on inertial flows. Three-dimensional numerical
simulations of inertial flows are often limited to the steady regime and are always limited to
very low Hartmann numbers (Ha∼ 50) [1, 2]. The square of the Hartmann number is the ratio
between the electromagnetic and the viscous forces. It is therefore a measure of the magnetic
field strength for a given fluid in a duct of a given scale. Although some linear stability
analysis is available [3], it is only recently that the non-linear regime has been investigated
numerically with success at high Hartmann numbers (Ha∼ 1000) [14]. However, this recent
work is strictly two-dimensional and concerns the flow between two infinite plates.
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In the present paper the full geometry of a duct is considered and the effect of the walls
parallel to the magnetic field is shown. Moreover the simulations are performed in three
dimensions, allowing the flow to depart from its two-dimensional structure.

Because the Hartmann layers are very thin, they are not treated numerically. The electric
currents which close within the Hartmann layers are integrated analytically and added to
the electric currents which close within the Hartmann walls. The numerical resolution is
then only limited by the side layers parallel to the magnetic field. These layers are much
thicker. While the thickness of the Hartmann layers scales with Ha−1, that of the side layers
scales with Ha−1/2. As a result the simulations are performed at a higher Hartmann number
(Ha= 300) than those of the former three-dimensional simulations, even though no adaptive
grid is used.

1.1. Governing Equations

The flow of an electrically conducting fluid under the influence of an external magnetic
field with negligible induced field is governed by the following equations [4] which express
the conservation of mass and momentum,

∇ ·u = 0, (1)

1

N

(
∂u
∂t
+ (u · ∇)u

)
= −∇ p+ j × ŷ+ 1

Ha2
∇2u, (2)

together with the conservation of electric charge and Ohm’s laws,

∇ · j = 0, (3)

j = −∇8+ u× ŷ. (4)

The duct has its axis in thex-direction and has a rectangular cross-section in theyz-plane. The
magnetic field is uniform and aligned with they-direction. The induced field is neglected.
The dimensionless variables are scaled as follows. The three coordinates are expressed in
terms of the length scale,a, chosen as the half width of the duct in they-direction. The scale
of the velocityu is the mean velocityv0. The unit of time is the length scale divided by the
mean velocity. The current densityj is scaled with the product of the electrical conductivity
σ of the fluid, the mean velocity, and the strength of the magnetic fieldB. The magnetic
field is scaled with its own strengthB so that its dimensionless representation is the unit
vectorŷ.

As in the classical literature on the inertialess core flow solution, the pressure is scaled
with the mass densityρ of the fluid times the square of the mean velocity times the interaction
parameterN= σ B2a/(ρv0). In this way, a stationary fully developed flow in a straight duct
is governed in its core by the balance between the pressure gradient and the Lorentz force,
the viscous terms being negligible outside the region of strong shear. The present work,
however, keeps all terms.

There are two dimensionless parameters in this problem. The interaction parameterN
characterises the ratio between the electromagnetic and the inertia forces, and the Hartmann
number squared is defined as Ha2= σ B2a2/µ, whereµ is the dynamic viscosity of the fluid.
The Reynolds number may be expressed as the ratio between these two parameters:

Re= Ha2

N
. (5)
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2. NUMERICAL METHOD

2.1. Conservative Form

As usual in low-order finite differencing, it is preferable for accuracy and numerical
stability to solve the equations in conservative form. Equation (2) may be written with the
unit tensor¯̄I ,

∂u
∂t
+∇ · (u⊗ u+ N p ¯̄I − Re−1∇u) = Nj × ŷ. (6)

2.2. Time Discretisation and Integration Method

The electric current densityjn at the time stepn is computed from Ohm’s law. The
electric potential is computed as the solution of the Poisson equation (8) obtained from the
divergence of Ohm’s law (7), assuming conservation of charge∇ · jn= 0:

jn = −∇8n + un × ŷ, (7)

∇28n = ∇ · (un × ŷ). (8)

All other terms are evaluated explicitly, with the exception of the pressure. The time depen-
dence of the solution is treated with the so-called “fractional step” method [7, 8]. It can be
summarised by the following three equations.

First, consider the time-discretised Navier–Stokes equations in conservative form,

un+1− un

1t
+∇ · (un ⊗ un + N p ¯̄I − Re−1∇un) = Njn × ŷ. (9)

Second, take the divergence of this equation in order to obtain the following Poisson-type
equation which can be solved for pressure since its right-hand side is known explicitly at
the previous time stepn:

∇2 p = ∇ · An whereAn = − 1

N
∇ · (un ⊗ un)+ jn × ŷ+ 1

Ha2∇2un. (10)

Third, the velocity at the next time stepn+ 1 is evaluated with a first-order scheme as

un+1 = un + N1tAn − N1t∇ p (11)

or with a second-order Adams–Bashforth scheme, which is preferred for unsteady flows,
in which case

∇2 p = ∇ ·
(

3

2
An − 1

2
An−1

)
, (12)

un+1 = un + 3

2
N1tAn − 1

2
N1tAn−1− N1t∇ p. (13)

2.3. Spatial Discretisation for Velocity and Pressure

The code is based on a three-dimensional finite volume discretisation, on an orthogonal
equally spaced grid. The code was initially written with a classical structured finite volume
mesh with all vector quantities at the surfaces of each cell and all scalar quantities in the
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middle of the cell (Fig. 4). All derivatives are discretised as central second-order finite
differences such as

∂p

∂x

∣∣∣∣
i+1/2, j,k

= pi+1, j,k − pi, j,k

1x
. (14)

As the advective term is written in divergence form, itsx-component is computed as

∇ · (uu) = ∂u2

∂x
+ ∂(uv)

∂y
+ ∂(uw)

∂z
(15)

with

∂u2

∂x

∣∣∣∣
i+1/2, j,k

= u2
i+1, j,k − u2

i, j,k

1x
(16)

and

∂(uv)

∂y

∣∣∣∣
i+1/2, j,k

= ui+1/2, j+1/2,kvi+1/2, j+1/2,k − ui+1/2, j−1/2,kvi+1/2, j−1/2,k

1y
, (17)

where

ui, j,k = 1

2
(ui+1/2, j,k + ui−1/2, j,k),

ui+1/2, j+1/2,k = 1

2
(ui+1/2, j+1,k + ui+1/2, j,k),

vi+1/2, j+1/2,k = 1

2
(vi+1, j+1/2,k + vi, j+1/2,k),

and similar definitions apply toui+1, j,k, ui+1/2, j−1/2,k, vi+1/2, j−1/2,k and∂(uw)/∂z.
The Laplacians ofpand8, and similarly the Laplacians of the three velocity components,

are discretised with ordinary second-order central differences:

∇2 p|i, j,k = pi+1, j,k − 2pi, j,k + pi−1, j,k

1x2
+ pi, j+1,k − 2pi, j,k + pi, j−1,k

1y2

+ pi, j,k+1− 2pi, j,k + pi, j,k−1

1z2
.

3. NUMERICAL STABILITY WITH RESPECT

TO THE ELECTROMAGNETIC TERMS

As the current densityj as defined in Eq. (4) is the sum of two terms, the Lorentz force
is the sum of the two terms at the right of the equation

j × ŷ = −∇8× ŷ+ (u× ŷ)× ŷ. (18)

If one first computesu× ŷ and then(u× ŷ)× ŷ using a standard staggered grid, the resulting
finite difference scheme is unstable for either high Hartmann number (strong magnetic field)
or coarse grid spacing in the direction perpendicular to both the magnetic field and to the
velocity (z-direction). This numerical instability is characterised by strong local oscillations
and unphysical jets at the corners of the duct as shown in Fig. 2. The reason for this instability
lies in the finite difference scheme resulting from the staggered grid itself. Indeed,u× ŷ is
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perpendicular tou and cannot occupy the same staggered grid points asu (Fig. 1). Once
u× ŷ is computed, the same problem occurs when computing(u× ŷ)× ŷ. Finally, the
Lorentz force computed as Eq. (18) can only result in an averaging of different values ofu
at several grid points, and it can be shown that this scheme is not monotone unless the grid
spacing in thez-direction is scaled proportionally to the inverse of the Hartmann number.
This result can be guessed by writing the full discretised equation of the explicit scheme,
in terms of the contribution of each grid point to the value of the velocity at the new time
step. The analysis of the monotonicity of the scheme will then help in finding the origin of
the numerical instability.

Such a development, however, needs some assumption. The classical literature on nu-
merical simulation deals with the numerical stability of finite differences schemes for
convection–diffusion equations without a pressure term. The criteria obtained for numeri-
cal stability are commonly used for the numerical solution of the Navier–Stokes equations,
even though they do not take the pressure term into account. Indeed, including the pressure
in the numerical stability analysis is not trivial, as it has no explicit expression and depends
on the boundary conditions. Nevertheless the classical Courant–Friedrich–Lewy (CFL) cri-
terion and the time step limitation in terms of the diffusion time scaled on the mesh interval
are commonly and successfully applied to the Navier–Stokes equations, although they are
derived for pure convection–diffusion equations.

In the following stability analysis, the pressure gradient will be dropped as well as the
electric potential. Indeed, the electric potential is computed similarly to the pressure. There
is no explicit expression for this scalar which is the solution of a Poisson equation depending
on the boundary conditions, just like the pressure. It will later be shown, from the numerical
experiments, that the conditions obtained from this analysis apply successfully to the original
set ofMHD equations (1)–(4) discretised as (6)–(11). After dropping the electric potential,
only the term(u× ŷ)× ŷ remains in the expression of the Lorentz force.

As usual in numerical stability analysis, the advection term is linearised so that∇ · (u⊗ u)
is replaced with∇ · (u0⊗ u), whereu0 is supposed to be constant. The momentum equa-
tion (6) is then reduced to

∂u
∂t
+∇ · (u0⊗ u− Re−1∇u

) = Nj × ŷ = N(u× ŷ)× ŷ. (19)

3.1. Numerical Instability Due to the Electromagnetic Term

Let us write the finite difference scheme for the electromagnetic term. Asu× ŷ is per-
pendicular tou, it cannot be discretised on the same edge a finite volume as the edge where
u lies. Therefore,u× ŷ has to be averaged from four neighbouring points, as pictured in
Fig. 1. Then, the same problem occurs for(u× ŷ)× ŷ. In the end, the Lorentz force is
averaged from the values ofu at nine different grid points. For instance, itsx-component is

(u× ŷ)× ŷ|xi+1/2, j,k = −
1

4
ui+1/2, j,k − 1

8
ui+3/2, j,k − 1

8
ui−1/2, j,k − 1

8
ui+1/2, j,k+1

− 1

8
ui+1/2, j,k−1− 1

16
ui+3/2, j,k+1− 1

16
ui+3/2, j,k−1

− 1

16
ui−1/2, j,k+1− 1

16
ui−1/2, j,k−1. (20)

For simplicity, suppose that the velocityu= (u, v, w) is such thatv=w= 0, which
corresponds to a fully developed laminar flow in a straight duct. Then the finite difference
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FIG. 1. Construction of a vector product from four points on a staggered grid:z-component of theu× ŷ in
the electromagnetic force.

scheme for theMHD convection–diffusion equation (19) discretised in time with a first-order
approximation similar to (11) reduces to the explicit form

un+1
i+1/2, j,k = a1un

i+1/2, j,k + a2un
i+3/2, j,k + a3un

i−1/2, j,k + a4un
j+1/2, j+1,k + a5un

i+1/2, j−1,k

+a6un
i+1/2, j,k+1+ a7un

i+1/2, j,k−1+ a8un
i+3/2, j,k+1+ a9 un

i+3/2, j,k−1

+a10u
n
i−1/2, j,k+1+ a11u

n
i−1/2, j,k−1, (21)

with

a1 = 1− 1

4
1t N − 21t (1x−2+1y−2+1z−2)Re−1

a2 = −1

2
1t1x−1u0− 1

8
1t N +1t1x−2 Re−1

a3 = +1

2
1t1x−1u0− 1

8
1t N +1t1x−2 Re−1

a4 = a5 = 1t1y−2 Re−1

a6 = a7 = −1

8
1t N +1t1z−2 Re−1

a8 = a9 = a10 = a11 = − 1

16
1t N.

This scheme is not monotone [10], as the coefficientsa8, . . . ,a11 are always negative. The
coefficientsa1,a2,a3 anda6,a7 are also negative when the following conditions are not
satisfied:

1t ≤ Re

2(1x−2+1y−2+1z−2)+ 1
4ReN

(22)

Re|u0|1x ≤ 2

1+ N
4
1x
|u0|

(23)

1z≤ 2
√

2

Ha
. (24)

However, monotonicity is a strong condition for numerical stability. While a monotone
scheme is numerically stable, a non-monotone scheme may be stable. The numerical exper-
iments show that the conditions (22)–(23) actually hold for stability. When these conditions



MONOTONE SCHEME FOR MHD INTERNAL FLOWS 187

FIG. 2. Velocity u= f (y, z) at Ha= 200 with unstable scheme.

are satisfied, the scheme is stable, even though the coefficientsa8, . . . ,a11, corresponding
to the furthest locationi + 1

2 ± 1, j, k± 1 from the central grid pointi + 1
2, j, k, are neg-

ative. When these conditions are not satisfied, the scheme is unstable. Equation (22) is the
diffusion limitation on the time step. Compared to classical computational fluid dynam-
ics, this limitation is stronger, as it includes an electromagnetic term at the denominator.
Equation (23) is a mesh Reynolds number limitation and can be rewritten as a limitation on
1x:

1x ≤ −2u0

N
+
√(

2u0

N

)2

+ 8

Ha2
≤ 2
√

2

Ha
. (25)

Most important is the condition (24), which has no equivalent to classicalCFD. The nu-
merical simulations of the three-dimensional code show numerical instabilities, as seen in
Fig. 2, when this condition is not satisfied and the walls of the channel are electrically
conducting. When the walls are electrically insulating, this condition does not hold; the
simulations remain numerically stable provided the other conditions (22) and (23) are sat-
isfied. Unfortunately, applications ofMHD duct flows such as lithium blankets for fusion
reactors imply that the walls are made of steel, and any coating of the interior of the duct
with some insulating material is made difficult by the conditions of use under high temper-
ature. The strongest numerical oscillations appear with a perfectly conducting wall. They
decrease with lower conductivities, but are present as soon as the walls are not insulating.
This is consistent with the previous simulations [1] and [2], where all simulations at rel-
atively large Ha numbers are performed with insulating walls while the simulations with
conducting walls are limited to Ha= 50 on a grid of 32× 32 points in the cross section
of the duct, i.e., with1y=1z= 1/16. The condition (24) for such a Hartmann number is
1z< 1/17.7.

This problem is the strongest limitation of the scheme (21). The length1z which cor-
responds to the space discretisation in the direction perpendicular to the side layers should
be inversely proportional to the Hartmann number. This implies that these layers should
be discretised as if they were as thin as the Hartmann layers; while the numerical resolu-
tion of the side layers only implies that1z∝Ha−1/2, the numerical stability implies that
1z∝Ha−1, leading to unnecessarily fine meshes at high Ha.

3.2. Stable Scheme for the Electromagnetic Terms

An alternative is to compute the Lorentz force from the following equation which in-
volves the componentu⊥ =−(u× ŷ)× ŷ of the velocity, perpendicular to the magnetic
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FIG. 3. Velocity u= f (y, z) at Ha= 200 with stable scheme.

field (Fig. 3):

j × ŷ = −∇8× ŷ− u⊥. (26)

Thex-component of the double vector product is then simply

(u× ŷ)× ŷ|xi+1/2, j,k = −ui+1/2, j,k. (27)

Thus, the finite difference scheme for theMHD convection–diffusion equation (19) reduces
to

un+1
i+1/2, j,k = a′1un

i+1/2, j,k + a′2un
i+3/2, j,k + a′3un

i−1/2, j,k + a′4un
j+1/2, j+1,k + a′5un

i+1/2, j−1,k

+a′6un
i+1/2, j,k+1+ a′7un

i+1/2, j,k−1, (28)

with

a′1 = 1− 1

4
1t N − 21t (1x−2+1y−2+1z−2)Re−1

a′2 = −
1

2
1t1x−1u0+1t1x−2 Re−1

a3 = 1

2
1t1x−1u0+1t1x−2 Re−1

a′4 = a′5 = 1t1y−2 Re−1 and a′6 = a′7 = 1t1z−2 Re−1.

This scheme is monotone as long as the following conditions are satisfied:

1t ≤ Re

2(1x−2+1y−2+1z−2)+ ReN
(29)

Re|u0|1x ≤ 2

1+ N
4
1x
|u0|
. (30)

Its stability isindependentof how coarse the grid is in the direction perpendicular to both
velocity and magnetic field.

3.3. Accurate Scheme for the Electromagnetic Terms and Fully Staggered Grid

Unfortunately, the numerically stable scheme for(u× ŷ)× ŷ as defined above is inaccu-
rate when it is used together with the−∇8× ŷ term of the Lorentz force (18) discretised
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FIG. 4. Ordinary staggered grid.

on an ordinary staggered grid (Fig. 4). Indeed, the derivative∂8/∂z involved in the term
−∇8× ŷ, which needs to be known at the grid pointi + 1

2, j, k before it is added to the
x-component of the momentum Eq. (19), can only be written as an average of finite differ-
ences centred ati, j, k andi + 1, j, k,

∂8

∂z

∣∣∣∣
i+1/2, j,k

= 1

2

(
8i, j,k+1−8i, j,k−1

21z
+ 8i+1, j,k+1−8i+1, j,k−1

21z

)
, (31)

unless a higher order interpolation involving more grid points is used.
A better scheme for∂8/∂z is obtained if a fully staggered grid (Fig. 5) is used, as already

pointed out by the author [12]. Such a grid was first used in a large eddy simulation ofMHD

duct flow by Shimomura [11] at Ha= 50. On this grid, the derivative of8 can then be
discretised more simply as

∂8

∂z

∣∣∣∣
i+1/2, j,k

= 8i+1/2, j,k+1/2−8i+1/2, j,k−1/2

1z
. (32)

This form (32) is also more accurate than (31). Moreover, if the accurate scheme (27) for
(u× ŷ)× ŷ=−u⊥ is combined with the less accurate scheme (31) in−∇8× ŷ, then the
results are not only inaccurate but completely wrong. Numerical tests on fully developed
flows show that the velocity profileu(y, z) at a given Ha number looks like that of a flow at
a much lower Ha number; the side layers are much thicker than they should be. Although

FIG. 5. Fully staggered grid.
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the scheme is consistent, its convergence with respect to the refinement of the grid cannot
be afforded with reasonable computer power at Hartmann numbers as moderate as 100 and
becomes impossible at higher values of this number.

The reason for this poor convergence can be seen easily. Let us neglect the variations
of u along the magnetic field̂y, which are much smaller in the side layers compared to
those in thez-direction. Then the error of the scheme (31) in−∇8× ŷ is at leading order
(1z2/6)(∂38/∂z3) while that of the scheme (32) is only(1z2/24)(∂38/∂z3). However,
the inaccurate scheme (31) used with the averaged scheme (20) for(u× ŷ)× ŷ gives, when
it is stable, the same results as those of the accurate scheme (32) combined with the exact
value (27). The reason for this is that the schemes (20) and (31) accumulate two errors
which almost cancel each other. Indeed, the finite difference (20) gives a negative error of
order−(1z2/4)(∂2u/∂z2).

In the end, it turns out that the numerically stable scheme (32) has to be used with a fully
staggered grid so that (26)–(27) is used for an accurate computation of the Lorentz force.
Therefore, this combination is retained for the simulations described here.

The numerical experiments with the three-dimensional time-dependent scheme (6)–(11)
corresponding to the set ofMHD equations (1)–(4) show that the scheme is numerically
stable under the monotonicity conditions (29) and (30), although these conditions were
guessed from simpler equations. When these conditions are not satisfied, the simulations
are found to be numerically unstable. In the case where the diffusion–time limitation (29)
is not satisfied, strong oscillations give an overflow after a few time steps. When only
the mesh Reynolds number condition (30) is not satisfied, small oscillations appear and
amplify slowly. They can be avoided if an upwind scheme is used. A second-order upwind
scheme [9] is actually used here when the mesh Reynolds number is greater than two. Then
the influence of the Lorentz force on numerical stability remains only in the condition (29).
The diffusion limitation on the time step is stronger than that of the scheme (21) of the
ordinary staggered grid.

Finally, the fully staggered grid, together with the schemes (27) and (32), is the best choice
for explicit finite volume computation ofMHD flow with standard second-order central finite
differences. Indeed, the most restrictive stability condition on the Hartmann number (24)
is avoided and the mesh Reynolds number limitation is not altered by the electromagnetic
force. Figure 3 gives an example of velocity profile obtained with these schemes using
the same parameters(Ha= 200) as for the numerically unstable example (Fig. 2). Another
example at even higher Hartmann number(Ha= 1000) and with the special treatment of
the Hartmann layers described in the next section is given in Fig. 8. Runs of unsteady flows
will be found in the last section.

4. BOUNDARY CONDITIONS

4.1. Arbitrary Conductivity of the Walls

The walls can have an arbitrary electrical conductivityσw, and the currents in these
boundaries are calculated using the thin wall condition. The thicknessε of the walls is
supposed to be much smaller than the half-width of the duct(ε¿a) so that the currents in
the walls are modelled as a sheet of current.

The normal component of the current coming from the fluid is a source for the current
in the wall. Therefore it gives rise to a nonzero divergence of the two-dimensional current
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FIG. 6. Electric current coming from the fluid and diverging onto an electrically conducting wall.

in the wall (Fig. 6). The relation between the currents can be written as Eq. (33), in terms
of the electric potential and the wall conductance ratioc, by splitting the gradient operator
into its components normal and tangential to the wall:

∇n8 = ∇t · (c∇t8) with c = σwε

σa
. (33)

The boundary conditions on the electric potential in the three-dimensional Poisson equa-
tion (8) should match the conservation law (33) for the currents in the walls. For this reason,
the code uses an iterative procedure, which differs from a previous work in the sense that it
does not call a two-dimensional Poisson solver to find the potential on the walls.

One starts with Neumann boundary conditions by setting its value at the previous iter-
ation. Then, the Poisson equation in the fluid (8) is solved. Now, the potential has a value
everywhere, including the walls, and the right-hand side of Eq. (33) can be calculated. The
Poisson equation (8) is solved again with new Neumann boundary conditions, now defined
as Eq. (33). The iteration is performed until convergence is reached. The convergence is
faster when using the relaxation parameterω<1, such that

∇n8
new= (1− ω)∇n8

old+ ω∇n8
older. (34)

When starting the program, the first time step may need 100 or more iterations, while
the following time steps need only an adjustment with respect to the previous time step and
therefore only need a few iterations. A maximum of approximately 10 iterations are needed
for the most unstable cases described in the last section.

4.2. Integral Treatment of the Hartmann Layer

The Hartmann layers, which are the layers perpendicular to the magnetic field, have a
thicknessδ=Ha−1 inversely proportional to the Hartmann number. For very high values of
Ha, they are so thin that it is hard to resolve them numerically. Therefore, Hartmann layers
are treated here analytically, using the integral relation that links properties of the core
with the variables at the wall and which have been used for inertialessMHD channel flow
simulations [5]. The solution in the core as well as in the side layers is obtained according
to the three-dimensional numerical scheme presented in the previous paragraphs. The task
is therefore to use conditions which apply to the core variables instead of the physical
boundary conditions for the fluid at the Hartmann wall.

In the Hartmann layers the currents find a path to close their circuit as they do within
conducting walls. The Hartmann layers act like an additional conducting sheet parallel to
the conducting walls. The conductivity used in the thin wall condition defined by Eq. (33)
is therefore effectively increased by the integral conductivity of the Hartmann layers, which
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is proportional to their thickness:

∇n8 = ∇t · [(c+ δ)∇t8]. (35)

The potential does not vary across the Hartmann layer to the leading order of approximation
so that the current component normal to the wall is still well represented by the normal
component of the core potential gradient.

Once the core solution is known, the solution within the layers can be reconstructed if
desired. It is known that the velocity components tangential to the wall decay exponentially
towards the wall.

ut = uC
t (1− e−Han). (36)

Note thatn stands here for the coordinate along the inward normal to the wall and the
superscriptC denotes values of the core velocities. The component normal to the wall
of the core velocity is obtained by integrating the equation for the conservation of mass,
∇ · u= 0, across the layer. This leads to the condition

uC
n = Ha−1∇t · uC

t . (37)

In the code, the high Hartmann number limit is implemented,

uC
n = 0 as Ha→∞. (38)

The kinematic conditions for the tangential components of the core velocity are estimated
at the wall by a linear or second-order extrapolation of the core solution. Higher order
extrapolations were also used and did not significantly change the results.

Figure 7 shows the velocity profile of a fully developed flow at Ha= 50 with a finite
conductivity of the walls(c= 0.05) and a resolution ofny× nz= 32× 32 grid points in the
cross section. In Fig. 8, the most difficult parameters were chosen while keeping the same
total number of grid points as the resolution is set tony× nz= 8× 128. The Hartmann
number is as high as Ha= 1000. This number could not be reached without the analytical
treatment of the Hartmann layers. The walls are perfectly conducting. While this is the worst
case in terms of numerical stability, as mentioned in Section 3, the code remains numerically
stable. Compared to Hunt’s exact analytical solution [6] in the case of conducting Hartmann
walls and insulating side walls corresponding to high velocity jets, the accuracy of the code
at Ha= 100 is 7% for a resolution ofny× nz= 8× 32, 2% forny× nz= 16× 64, and 0.3%
for ny× nz= 32× 128.

FIG. 7. Analytical treatment of the thin Hartmann layers. Fully developed velocity profileu= f (y, z) at
Ha= 50 with the wall conductance ratioc= 0.05 and a resolution of 32× 32. The velocity in the thin Hartmann
layers is not displayed.
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FIG. 8. Same as Fig. 7 but at the very high Hartmann number Ha= 1000 and with perfectly conducting
walls. The resolution is 8× 128 (same total number of grid points). The extremely thin Hartmann layers are not
displayed.

5. SIMULATIONS

5.1. Introduction

Magnetic fields tend to damp instabilities in electrically conducting fluids. This effect is
unwanted for some applications where high heat transfer and turbulence are preferred. In
order to enhance the instability of a flow through an insulating duct, the walls perpendicular
to the magnetic field can be supplied with a pair of electrically conducting strips (Fig. 9),
as was originally proposed by Kolesnikov [13]. This device was used by this author to
studyMHD shear layers. It may also be used as a turbulence promoter in order to improve
the cooling of fusion reactors. Recently, it has been modelled analytically and numerically
by Bühler [14] as a two-dimensional flow between two infinite plates and investigated
experimentally by Debray [15].

5.2. Flow between Two Infinite Plates with a Conducting Strip

First, the code was tested with respect to the results obtained in two dimensions by B¨uhler.
The code was run with no stress boundary conditions at the side walls, using the following
parameters: Ha= 1000; ratio of the distance between the two plates to the strip width= 10;
insulating Hartmann walls; size of the grid inx, y, z-directions= 27× 16× 128 cells; com-
putational domain: 0< x<λ, whereλ= 0.802,−1< y<+1,−1< z<+1; conductivity
of the stripc0= 4.2× 102; ratio of the width of the channel to the width of the stripar = 10,
the conductivity of the strip being smoothed at the edges as in Ref. [14],

c = c0

1+
(

sinh z
sinh a−1

r

)6 . (39)

FIG. 9. Duct with electrically conducting strips.
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The code is run with periodic boundaries at the inlet and outlet, separated by a distance
equal to the wavelengthλ of the instability, which is given by the linear stability analysis.

The critical Reynolds number for the onset of the instability is between 2000 and 2100 for
the three-dimensional code, and 1800 for the two-dimensional code and the linear stability
analysis. The Reynolds number is based on the velocity far from the strip. The same pattern
is found on the vorticity lines on both codes for a higher Reynolds number of 4000. The
discrepancy in the critical Reynolds number may have its origin in the higher numerical
diffusion of the three-dimensional code compared to the two-dimensional code, which uses
a higher resolution in the plane perpendicular to the magnetic field.

FIG. 10. Evolution of a magnetohydrodynamic shear layer created by electrically conducting strips in a duct
(see geometry in Fig. 9). View of they-component of the vorticity in the plane (y= 0). The frames are ordered
from bottom to top and from left to right at the dimensionless time intervals 2.5, 5.0, 7.0, 10, 12.5, 15.0, 17.5, 20,
and 22.5 from the initial perturbation.
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5.3. Unstable Flow in a Duct with Conducting Strips

The code is run for the same parameters as the experiment performed by Debray [15].
The parameters of the experiment and its numerical simulation are the following: Ha= 300;
N= 29; Re= 3108; ratio of the distance between the two plates to the strip widthar = 6;
all walls insulating; size of the grid inx, y, z-directions= 27× 16× 128 cells; compu-
tational domain: 0< x<(λ= 2.79) and−2< y<+2, −1< z<+1; conductivity of the
stripc0= 4.2× 10−2; and half width of the stripsar = 0.167. The Reynolds number is now
based on the mean velocity that can be deduced from the flow rate. The flow rate is kept
constant throughout the simulation. The length of the computational domain is set to the
wavelength that was found experimentally. Note that the figures represent the solution for
two wave-lengths, although the computational domain extends over one wavelength only.

The simulation is initialised with a small perturbation on the velocity. This perturbation
is rapidly amplified as large eddies around the strip (Fig. 10). The flow is essentially two
dimensional, as shown by they-component of vorticity plotted at differenty-levels of the
duct (Fig. 11). The componentv of the velocity parallel to the magnetic field differs from
zero only in the region of strong shear (Fig. 11). It remains very small, about 50 times
smaller than the maximum value ofw.

During a transient period, these vortices grow relatively slowly compared to the initial
small perturbation and develop from the strip to the side walls. When they reach the side
layers, some new vortices are created and develop from the side layers to the strip. The
vortices occurring from the side walls become stronger than the initial vortices that arose
from the strips. At this time the maximum transverse velocityw changes rapidly from 0.4
to 1.3. Later, the whole domain is strongly unstable and the resolution of the simulation

FIG. 11. Departure from the two-dimensional nature of magnetohydrodynamics duct flows. Left: view over
two wavelengths of they-component of the vorticity in the planes (y=−a,−a/2, 0). Right: view over one
wavelength only of the perturbation in they-component of the velocity in the plane (y= 0.5).
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becomes too weak. However, no numerical instability in the form of a sudden overflow
appears, which shows that the numerical scheme is reliable.

5.4. Unstable Flow in a Duct with All Walls Insulating

Since the side layers become unstable soon after the shear layer between the strips, and
a long time before its vortices reach the sides of the duct, another run under the same
conditions but without the conducting strips is performed to find out how unstable the flow
would be without any special device. Therefore a fully insulating duct is considered here.
Since there are no experimental data in that case, the wavelength of the previous simulation
is chosen as a first attempt to model this flow. The Reynolds number is again based on the
mean velocity, based on the constant flow rate. The initial perturbation is the similar to the
previous one, now located in the boundary layers attached to the side walls.

The perturbation needs a much longer time than in the previous section, in order to be
amplified (Fig. 12). There is now almost no three-dimensional effect in the components of
velocity perpendicular to the magnetic field since no electrical discontinuity happens to be

FIG. 12. Evolution of the unstable magnetohydrodynamic boundary layers at the walls parallel to the magnetic
field in an electrically insulated duct. View of they-component of the vorticity in the plane (y= 0). The frames
are ordered from bottom to top and from left to right at the dimensionless time intervals 52.5, 55.0, 57.0, 60, 62.5,
65.0, 67.5, 70.0, 72.5, 75.0, 77.5, and 80.0 from the initial perturbation.
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at the Hartmann walls as in the case of the conducting strips. When some vortices appear,
they are located close to the side walls and extend to the bulk of the flow, although they do
not reach the central core of the flow. The wavelength of the perturbation is half the length
of the computation domain in the axial direction, until the vortices coming from a side wall
meet the vortices coming from the opposite side wall. At this stage, the vortices coalesce
to form a larger structure with a wavelength equal to the length of the domain. After 70
dimensionless units of time, the instability has not reached such a stage that the resolution
of the grid becomes as poor as in the run with the conducting strips.

6. CONCLUSION

A stable and consistent scheme for finite volume computation ofMHD flows at negligible
magnetic Reynolds number has been presented and tested on unsteady duct flows. Analytical
boundary conditions for the velocity and the currents at the walls perpendicular to the
magnetic field were combined with the numerical boundary conditions for electrically
conducting walls, allowing three-dimensional simulations at high Hartmann number. It is
shown that such flows are unstable with or without turbulence promoters such as conducting
strips. These turbulence promoters certainly increase the instability of duct flows, but the
Reynolds numbers appropriate for fusion-reactor problems are much higher than in this
paper. It is therefore expected that no device is needed to create turbulence, at least for the
conditions of the last simulation where a straight duct is electrically insulated on its whole
interior surface.
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